
NiBetaSeries
Release 0.1.0

Dec 14, 2018

Contents

1 NiBetaSeries 1
1.1 Installation . 2
1.2 Documentation . 2
1.3 Development . 2

2 Betaseries 3
2.1 Introduction . 3
2.2 Relationship to Resting State . 3
2.3 Relationship to Traditional Task Analysis . 3
2.4 Summary . 4
2.5 Conceptual Background . 4
2.6 Math Background . 4
2.7 Relevent Software . 5
2.8 Other Relevant Readings . 5
2.9 References . 5

3 Installation 7

4 Usage 9
4.1 Command-Line Arguments . 9

5 Workflows 11
5.1 Participant Workflow . 11
5.2 BetaSeries Workflow . 11
5.3 Correlation Workflow . 11

6 Reference 15
6.1 nibetaseries . 15

7 Contributing to NiBetaSeries 17
7.1 Table of contents . 17
7.2 Joining the BIDS community . 17
7.3 Check out the BIDS Starter Kit . 18
7.4 Get in touch . 18
7.5 Contributing through GitHub . 18
7.6 Writing in markdown . 18
7.7 Writing in ReStructuredText . 19

i

7.8 Where to start: issue labels . 19
7.9 Making a change with a pull request . 19
7.10 Recognizing contributions . 21
7.11 Thank you! . 21

8 Authors 23

9 0.2.1 (November 13, 2018) 25

10 0.2.0 (November 13, 2018) 27

11 0.1.0 (2018-06-08) 29

12 Indices and tables 31

Bibliography 33

Python Module Index 35

ii

CHAPTER 1

NiBetaSeries

docs
tests

package

NiBetaSeries is BIDS compatible application that calculates betaseries correlations. In brief, a beta coefficient is
calculated for each trial (or event) resulting in a series of betas that can be used to correlate regions of interest with
each other.

NiBetaSeries takes preprocessed data as input that satisfy the BIDS deriviatives specification. In practical terms,
NiBetaSeries uses the output of fmriprep, a great BIDS compatible preprocessing tool. NiBetaSeries requires the
input and the atlas to already be in MNI space since currently no transformations are applied to the data. You can use
any arbitrary atlas as long as it is in MNI space (the same space as the preprocessed data).

With NiBetaSeries you can receive:

• betaseries images (TODO)

• correlation matrices

This is a very young project that still needs some tender loving care to grow. That’s where you fit in! If you would like
to contribute, please read our code of conduct and contributing page.

This project heavily leverages nipype, nilearn, pybids, and nistats for development. Please check out their pages and
support the developers.

• Free software: MIT license

1

https://nibetaseries.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/HBClab/NiBetaSeries
https://codecov.io/github/HBClab/NiBetaSeries
https://pypi.python.org/pypi/nibetaseries
https://pypi.python.org/pypi/nibetaseries
https://pypi.python.org/pypi/nibetaseries
https://pypi.python.org/pypi/nibetaseries
https://zenodo.org/badge/latestdoi/95605121
http://bids.neuroimaging.io/
https://bids-apps.neuroimaging.io/
http://bit.ly/2vKeKcp
http://fmriprep.readthedocs.io/en/latest/
http://nipype.readthedocs.io/en/latest/
https://nilearn.github.io/
https://incf.github.io/pybids/
https://nistats.github.io/

NiBetaSeries, Release 0.1.0

1.1 Installation

pip install nibetaseries

1.2 Documentation

https://NiBetaSeries.readthedocs.io/

If you’re interested in contributing to this project, here are some guidelines for contributing. Another good place to
start is by checking out the open issues.

1.3 Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

2 Chapter 1. NiBetaSeries

https://NiBetaSeries.readthedocs.io/
https://nibetaseries.readthedocs.io/en/latest/contributing.html
https://github.com/HBClab/NiBetaSeries/issues

CHAPTER 2

Betaseries

2.1 Introduction

Betaseries track the trial-to-trial modelled hemodynamic fluctuations that occur within task functional magnetic res-
onance imaging (task fMRI). This fills an important analytical gap between measuring hemodynamic fluctuations in
resting state fMRI and measuring regional activations via cognitive subtraction in task fMRI.

2.2 Relationship to Resting State

Betaseries is similar to resting state because the same analytical strategies applied to resting state data can obstensibly
be applied to betaseries. At the core of both resting state and betaseries we are working with a list of numbers at
each voxel. We can correlate, estimate regional homogeniety, perform independent components analysis, or conduct
a number of different analyses with these voxels. However, betaseries deviates from resting state in two important
ways. First, you can do cognitive subtraction using betaseries. Second, interpretation of the lists of numbers are
different for resting state and betaseries. Resting state measures the unmodelled hemodynamic fluctuations that occur
without explicit stimuli. Betaseries, on the other hand, measures the modelled hemodynamic fluctuations that occur in
response to an explicit stimulus. Both resting state and betaseries may measure intrinsic connectivity, but betaseries
may also measure the task evoked connectivity (e.g. connectivity between regions that is increased during some
cognitive process).

2.3 Relationship to Traditional Task Analysis

Betaseries is also similar to traditional task analysis because cognitive subtraction can be used in both. As with resting
state, betaseries deviates from traditional task analysis in several important ways. Say we are interested in observing
how the brain responds to faces versus houses. The experimenter has a timestamp of exactly when and how long a
face or house is presented. That timestamp information is typically convolved with a hemodynamic response function
(HRF) to represent how the brain stereotypically responds to any stimulus resulting in a model of how we expect the
brain to respond to places and/or faces. This is where traditional task analysis and betaseries diverge. In traditional
task analysis all the face trials are estimated at once, giving one summary measure for how strongly each voxel was

3

NiBetaSeries, Release 0.1.0

activated (same for house trials). The experimenter can subtract the summary measure of faces from houses to see
which voxels are more responsive to houses relative to faces (i.e. cognitive subtraction). In betaseries each trial is
estimated separately each voxel has as many estimates at there are trials (which can be labelled as either face or house
trials). The experimenter can now reduce the series of estimates (a betaseries) for each voxel into a summary measure
such as a correlation with region(s) of interest. The correlation map for faces can be subtracted from houses, giving
voxels that are more correlated with the region of interest for houses relative to faces. Whereas traditional task analysis
treats the variance of brain responses between trials of the same type (e.g. face or house) as noise, betaseries leverages
this variance to make conclusions about which brain regions may communicate with each other during a particular
trial type (e.g. faces or houses).

2.4 Summary

Betaseries is not in opposition to resting state or traditional task analysis, the methods are complementary. For exam-
ple, network parcelations derived from resting state data can be used on betaseries data to ascertain if the networks
observed in resting state follow a similar pattern with betaseries. Additionally, regions determined from traditional
task analysis can be used as regions of interest for betaseries analysis. Betaseries straddles the line between traditional
task analysis and resting state, observing task data through a network lens.

2.5 Conceptual Background

Jesse Rissman [Rissman2004] was the first to publish on betaseries correlations describing their usage in the context
of a working memory task. In this task, participants saw a cue, a delay, and a probe, all occurring close in time. A
cue was presented for one second, a delay occurred for seven seconds, and a probe was presented for one second.
Given the HRF takes approximately six seconds to reach its peak, and generally takes over 20 seconds to completely
resolve, we can begin to see a problem. The events within the trials occur too close to each other to discern what
brain responses are related to encoding the cue, the delay, or the probe. To discern how the activated brain regions
form networks, Rissman conceptualized betaseries correlations. Instead of having a single regressor to describe all
the cue events, a single regressor for all the delay events, and a single regressor for all the probe events (as is done
in traditional task analysis), there is an individual regressor for every event in the experiment. For example, if your
experiment has 40 trials, each with a cue, delay, and probe event, the model will have a total of 120 regressors, fitting
a beta estimate for each trial. Complete this process for each trial of a given event type (e.g. cue), at the end you will
have 4D volume where each volume represents the beta estimates for a particular trial, and each voxel represents a
specific beta estimate.

Having one regressor per trial in a single model is known as least squares all. This method, however, has limitations in
the context of fast event related designs. Since each trial has its own regressor, trials that occur very close in time are
colinear (e.g. are very overlapping). Jeanette Mumford et al. [Mumford2012] investigated this issue in the context of
image classification. In this article, Mumford introduces another modelling strategy known as least squares separate.
In this modelling strategy, instead of having one GLM with a regressor per trial, least squares separate implements a
GLM per trial with two regressors: 1) one for the trial of interest, and 2) one for every other trial in the experiment.
This process reduces the colinearity of the regressors and creates a more valid estimate of how each regressor fits the
data.

2.6 Math Background

𝑌 = 𝑋𝛽 + 𝜖(2.1)

4 Chapter 2. Betaseries

NiBetaSeries, Release 0.1.0

The above equation is the General Linear Model (GLM) presented using matrix notation. 𝑌 represents the time-series
we are attempting to explain. The 𝛽 assumes any value that minimizes the squared error between the modeled data
and the actual data, 𝑌 . Finally, 𝜖 (epsilon) refers to the error that is not captured by the model. Within a GLM,
trial-to-trial betas may be averaged for a given trial type and the variance is treated as noise. However, those trial-
to-trial fluctuations may also contain important information the typical GLM will ignore/penalize. With a couple
modifications to the above equation, we arrive at calculating a betaseries.

𝑌 = 𝑋1𝛽1 +𝑋2𝛽2 + ...+𝑋𝑛𝛽𝑛 + 𝜖(2.2)

With the betaseries equation, a beta is estimated for every trial, instead of for each trial type (or whatever logical
grouping). This gives us the ability to align all the trial betas from a single trial type into a list (i.e. series). This
operation is completed for all voxels, giving us as many lists of betas as there are voxels in the data. Essentially, we
are given a 4-D dataset where the fourth dimension represents trial number instead of time (as the fourth dimension
is represented in resting state). And analogous to resting state data, we can perform correlations between the voxels to
discern which voxels (or which aggregation of voxels) synchronize best with other voxels.

There is one final concept to cover in order to understand how the betas are estimated in NiBetaSeries. You
can model individual betas using a couple different strategies; with a least squares all (LSA) approximation which
the equation above represents, and a least squares separate (LSS) approximation in which each trial is given it’s own
GLM. The advantage of LSS comes from reducing the colinearity between closely spaced trials. In LSA, if trials
occurred close in time then it would be difficult to model whether the fluctuations should be attributed to one trial or
the other. LSS reduces this ambiguity by only having two regressors: one for the trial of interest and another for every
other trial. This reduces the colinearity between regressors and makes each beta estimate more reliable.

for trial, beta in zip(trials, betas):
data = X[trial] * beta + error

This python psuedocode demonstrates LSS where each trial is given it’s own model.

2.7 Relevent Software

BASCO (BetA Series COrrelations) is a matlab program that also performs betaseries correlations

2.8 Other Relevant Readings

• [Cisler2014]

• [Gottlich2015]

• [Abdulrahman2016]

2.9 References

2.7. Relevent Software 5

https://www.nitrc.org/projects/basco/

NiBetaSeries, Release 0.1.0

6 Chapter 2. Betaseries

CHAPTER 3

Installation

At the command line:

pip install nibetaseries

7

NiBetaSeries, Release 0.1.0

8 Chapter 3. Installation

CHAPTER 4

Usage

4.1 Command-Line Arguments

NiBetaSeries BIDS arguments

usage: nibs [-h] [-v] [-sm SMOOTHING_KERNEL] [-lp LOW_PASS]
[-c CONFOUNDS [CONFOUNDS ...]] [-w WORK_DIR]
[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[--session_label SESSION_LABEL] [-t TASK_LABEL]
[--run_label RUN_LABEL] [-sp {MNI152NLin2009cAsym}]
[--variant_label VARIANT_LABEL] [--exclude_variant_label]
[--hrf_model {glover,spm,fir,glover + derivative,glover + derivative +

→˓dispersion,spm + derivativespm + derivative + dispersion}]
[-a ATLAS_IMG] -l ATLAS_LUT [--graph]
bids_dir derivatives_pipeline output_dir {participant,group}

4.1.1 Positional Arguments

bids_dir The directory with the input dataset formatted according to the BIDS standard.

derivatives_pipeline The pipeline that contains minimally preprocessed img, brainmask, and con-
founds.tsv

output_dir The directory where the output directory and files should be stored. If you are
running group level analysis this folder should be prepopulated with the results
of theparticipant level analysis.

analysis_level Possible choices: participant, group

Level of the analysis that will be performed Multiple participant level analyses
can be run independently (in parallel) using the same output_dir

9

NiBetaSeries, Release 0.1.0

4.1.2 Named Arguments

-v, --version show program’s version number and exit

--participant_label The label(s) of the participant(s) that should be analyzed. The label corresponds
to sub-<participant_label> from the BIDS spec (so it does not include “sub-“). If
this parameter is not provided all subjects should be analyzed. Multiple partici-
pants can be specified with a space separated list.

4.1.3 Options for preprocessing

-sm, --smoothing_kernel select a smoothing kernel (mm)

-lp, --low_pass low pass filter (Hz)

-c, --confounds The confound column names that are to be included in nuisance regression. write
the confounds you wish to include separated by a space

-w, --work_dir directory where temporary files are stored

4.1.4 Options for selecting images

--session_label select a session to analyze

-t, --task_label select a specific task to be processed

--run_label select a run to analyze

-sp, --space_label Possible choices: MNI152NLin2009cAsym

select a bold derivative in a specific space to be used

--variant_label select a variant bold to process

--exclude_variant_label exclude the variant from FMRIPREP

4.1.5 Options for processing beta_series

--hrf_model Possible choices: glover, spm, fir, glover + derivative, glover + derivative + dis-
persion, spm + derivativespm + derivative + dispersion

convolve your regressors with one of the following hemodynamic response func-
tions

-a, --atlas-img input atlas nifti where each voxel within a “region” is labeled with the same
integer and there is a unique integer associated with each region of interest

-l, --atlas-lut atlas look up table (tsv) formatted with the columns: index, regions which corre-
spond to the regions in the nifti file specified by –atlas-img

4.1.6 misc options

--graph generates a graph png of the workflow

10 Chapter 4. Usage

CHAPTER 5

Workflows

5.1 Participant Workflow

The general workflow for a participant models the betaseries for each trial type for each bold file associated with the
participant. Then betas within a region of interest are based off a parcellation are averaged together. This occurs as
many times as there are trials for that particular trial type, resulting in a psuedo-timeseries (e.g. each point in “time”
represents an occurrence of that trial). All the psuedo time-series within a trial type are correlated with each other,
resulting in a final correlation (adjacency) matrix.

5.2 BetaSeries Workflow

The bold file is temporally filtered by nilearn (high pass and/or low pass) before being passed into nistats for modelling
by least squares separate.

5.3 Correlation Workflow

The betaseries file has signal averaged across trials within a region defined by an atlas parcellation. After signal
extraction has occurred for all regions, the signals are all correlated with each other to generate a correlation matrix.

11

NiBetaSeries, Release 0.1.0

input_node (utility)

correlation_wf

betaseries_wf

ds_correlation_matrix (bids)

output_node (utility)

12 Chapter 5. Workflows

NiBetaSeries, Release 0.1.0

betaseries_node (nistats)

output_node (utility)

input_node (utility)

atlas_corr_node (nilearn)

rename_matrix_node (utility)

input_node (utility)

output_node (utility)

5.3. Correlation Workflow 13

NiBetaSeries, Release 0.1.0

14 Chapter 5. Workflows

CHAPTER 6

Reference

6.1 nibetaseries

15

NiBetaSeries, Release 0.1.0

16 Chapter 6. Reference

CHAPTER 7

Contributing to NiBetaSeries

Welcome to the NiBetaSeries repository!

We’re so excited you’re here and want to contribute.

NiBetaSeries calculates betaseries correlations using python! We hope that these guidelines are designed to make it
as easy as possible to contribute to NiBetaSeries and the broader Brain Imaging Data Structure (BIDS) community. If
you have any questions that aren’t discussed below, please let us know through one of the many ways to get in touch.

7.1 Table of contents

Been here before? Already know what you’re looking for in this guide? Jump to the following sections:

• Joining the BIDS community

• Check out the BIDS Starter Kit

• Get in touch

• Contributing through GitHub

• Where to start: wiki, code and templates

• Where to start: issue labels

• Make a change with a pull request

• Example pull request

• Recognizing contributions

7.2 Joining the BIDS community

BIDS - the Brain Imaging Data Structure - is a growing community of neuroimaging enthusiasts, and we want to make
our resources accessible to and engaging for as many researchers as possible. NiBetaSeries will hopefully play a small

17

http://bids.neuroimaging.io

NiBetaSeries, Release 0.1.0

part towards introducing people to BIDS and help the broader community.

We therefore require that all contributions adhere to our Code of Conduct.

How do you know that you’re a member of the BIDS community? You’re here! You know that BIDS exists! You’re
officially a member of the community. It’s THAT easy! Welcome!

7.3 Check out the BIDS Starter Kit

If you’re new to BIDS make sure to check out the amazing BIDS Starter Kit.

7.4 Get in touch

There are lots of ways to get in touch with the team maintaining NiBetaSeries if you have general questions about the
BIDS ecosystem. For specific questions about NiBetaSeries, please see the practical guide (Currently the main contact
is James Kent)

• Message jdkent on the brainhack slack

• Click here for an invite to the slack workspace.

• The BIDS mailing list

• Via the Neurostars forum.

– This is our preferred way to answer questions so that others who have similar questions can
benefit too! Even if your question is not well-defined, just post what you have so far and we will be
able to point you in the right direction!

7.5 Contributing through GitHub

git is a really useful tool for version control. GitHub sits on top of git and supports collaborative and distributed
working.

We know that it can be daunting to start using git and GitHub if you haven’t worked with them in the past, but the
NibetaSeries maintainer(s) are here to help you figure out any of the jargon or confusing instructions you encounter!

In order to contribute via GitHub you’ll need to set up a free account and sign in. Here are some instructions to help
you get going. Remember that you can ask us any questions you need to along the way.

7.6 Writing in markdown

GitHub has a helpful page on getting started with writing and formatting on GitHub.

Most of the writing that you’ll do in github will be in Markdown. You can think of Markdown as a few little symbols
around your text that will allow GitHub to render the text with a little bit of formatting. For example you could write
words as bold (**bold**), or in italics (*italics*), or as a link to another webpage.

18 Chapter 7. Contributing to NiBetaSeries

CODE_OF_CONDUCT.md
https://github.com/INCF/BIDS-Starter-Kit
https://brainhack.slack.com/messages/C8RG7F6PN
https://brainhack-slack-invite.herokuapp.com
https://groups.google.com/forum/#!forum/bids-discussion
https://neurostars.org/tags/bids
https://git-scm.com
https://github.com
https://help.github.com/articles/signing-up-for-a-new-github-account/
https://help.github.com/articles/getting-started-with-writing-and-formatting-on-github
https://daringfireball.net/projects/markdown
https://www.youtube.com/watch?v=dQw4w9WgXcQ

NiBetaSeries, Release 0.1.0

7.7 Writing in ReStructuredText

This file and the rest of the documentation files in this project are written using ReStructuredText. This is another
markup language that interfaces with sphinx, a documentation generator. Sphinx is used on ReadTheDocs, a docu-
mentation hosting service. Putting it all together, ReadTheDocs is an online documentation hosting service that uses
sphinx, and sphinx is a documentation generation service that uses ReStructuredText to format the content. What a
mouthfull!

7.8 Where to start: issue labels

The list of labels for current issues can be found here and includes:

• If you feel that you can contribute to one of these issues, we especially encourage you to do so!

• There are lots of ways to ask questions but opening an issue is a great way to start a conversation and get your
answer. Ideally, we’ll close it out by adding the answer to the docs!

• These issues are particularly appropriate if it is your first contribution to NiBetaSeries, or to GitHub overall.

If you’re not sure about how to go about contributing, these are good places to start. You’ll be mentored through
the process by the maintainers team. If you’re a seasoned contributor, please select a different issue to work
from and keep these available for the newer and potentially more anxious team members.

• If you want to ask for something new, please try to make sure that your request is distinct from any others that
are already in the queue (or part of NiBetaSeries!). If you find one that’s similar but there are subtle differences
please reference the other enhancement in your issue.

• These are usually really great issues to help out with: our goal is to make it easy to understand BIDS without
having to ask anyone any questions! Documentation is the ultimate solution

• These issues are reporting a problem or a mistake in the project.

The more details you can provide the better! If you know how to fix the bug, please open an issue first and then
submit a pull request

We like to model best practice, so NiBetaSeries itself is managed through these issues. We may occasionally
have some to coordinate some logistics.

7.9 Making a change with a pull request

We appreciate all contributions to NiBetaSeries. THANK YOU for helping us build this useful resource.

Remember that if you’re adding information to the wiki you don’t need to submit a pull request. You can just log
into GitHub, navigate to the wiki and click the edit button.

If you’re updating the code, the following steps are a guide to help you contribute in a way that will be easy for
everyone to review and accept with ease.

7.9.1 1. Comment on an existing issue or open a new issue referencing your addi-
tion

This allows other members of the NiBetaSeries team to confirm that you aren’t overlapping with work that’s currently
underway and that everyone is on the same page with the goal of the work you’re going to carry out.

This blog is a nice explanation of why putting this work in up front is so useful to everyone involved.

7.7. Writing in ReStructuredText 19

http://docutils.sourceforge.net/rst.html#user-documentation
http://www.sphinx-doc.org/en/master/index.html
https://docs.readthedocs.io/en/latest/index.html
https://github.com/HBClab/NiBetaSeries/labels
https://nibetaseries.readthedocs.io/en/latest/
https://github.com/HBClab/NiBetaSeries/labels/good%20first%20issue
https://github.com/HBClab/NiBetaSeries/labels/bug
https://github.com/HBClab/NiBetaSeries/wiki
https://www.igvita.com/2011/12/19/dont-push-your-pull-requests

NiBetaSeries, Release 0.1.0

7.9.2 2. Fork the NiBetaSeries repository to your profile

This is now your own unique copy of NiBetaSeries. Changes here won’t affect anyone else’s work, so it’s a safe space
to explore edits to the code!

Make sure to keep your fork up to date with the master repository, otherwise you can end up with lots of dreaded
merge conflicts.

7.9.3 3. Clone your forked NiBetaSeries to your work machine

Now that you have your own repository to explore you should clone it to your work machine so you can easily edit the
files:

clone the repository
git clone https://github.com/YOUR-USERNAME/NiBetaSeries
change directories into NiBetaSeries
cd NiBetaSeries
add the upstream repository (i.e. https://github.com/HBClab/NiBetaSeries)
git remote add upstream https://github.com/HBClab/NiBetaSeries

7.9.4 4. Make the changes you’ve discussed

Try to keep the changes focused. If you submit a large amount of work in all in one go it will be much more work for
whomever is reviewing your pull request. Help them help you

This project requires you to “branch out” and make new branch and a new issue to go with it if the issue doesn’t
already exist.

Example:

create the branch on which you will make your issues
git checkout -b your_issue_branch

7.9.5 5. Run the tests

When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

If the checks fail and you know what went wrong, make the change and run tox again. If you are not sure what the
error is, go ahead to step 6.

Note: tox doesn’t work on everyone’s machine, so don’t worry about getting the tests working on your machine for
now

7.9.6 6. Add/Commit/Push the changes to the NiBetaSeries repository

Once you’ve made the changes on your branch you are ready to 1) add the files to be tracked by git 2) commit the
files to take a snapshot of the branch, and 3) push the changes to your forked repository. You can do complete the
add/commit/push process following this github help page.

20 Chapter 7. Contributing to NiBetaSeries

https://help.github.com/articles/syncing-a-fork
https://help.github.com/articles/about-merge-conflicts
https://media.giphy.com/media/uRb2p09vY8lEs/giphy.gif
https://help.github.com/articles/creating-and-deleting-branches-within-your-repository
https://github.com/HBClab/NiBetaSeries/issues
http://tox.readthedocs.io/en/latest/install.html
https://help.github.com/articles/adding-a-file-to-a-repository-using-the-command-line/

NiBetaSeries, Release 0.1.0

7.9.7 7. Submit a pull request

A member of the NiBetaSeries team will review your changes to confirm that they can be merged into the main
codebase.

A review will probably consist of a few questions to help clarify the work you’ve done. Keep an eye on your github
notifications and be prepared to join in that conversation.

You can update your fork of the NiBetaSeries repository and the pull request will automatically update with those
changes. You don’t need to submit a new pull request when you make a change in response to a review.

GitHub has a nice introduction to the pull request workflow, but please get in touch if you have any questions.

7.9.8 NiBetaSeries coding style guide

Whenever possible, instances of Nodes and Workflows should use the same names as the variables they are assigned
to. This makes it easier to relate the content of the working directory to the code that generated it when debugging.

Workflow variables should end in _wf to indicate that they refer to Workflows and not Nodes. For instance, a workflow
whose basename is myworkflow might be defined as follows:

from nipype.pipeline import engine as pe

myworkflow_wf = pe.Workflow(name='myworkflow_wf')

If a workflow is generated by a function, the name of the function should take the form init_<basename>_wf :

def init_myworkflow_wf(name='myworkflow_wf):
workflow = pe.Workflow(name=name)
...
return workflow

myworkflow_wf = init_workflow_wf(name='myworkflow_wf')

If multiple instances of the same workflow might be instantiated in the same namespace, the workflow names and
variables should include either a numeric identifier or a one-word description, such as:

myworkflow0_wf = init_workflow_wf(name='myworkflow0_wf')
myworkflow1_wf = init_workflow_wf(name='myworkflow1_wf')

or

myworkflow_lh_wf = init_workflow_wf(name='myworkflow_lh_wf')
myworkflow_rh_wf = init_workflow_wf(name='myworkflow_rh_wf')

7.10 Recognizing contributions

BIDS follows the all-contributors specification, so we welcome and recognize all contributions from documentation
to testing to code development. You can see a list of current contributors in the BIDS specification.

7.11 Thank you!

You’re awesome.

7.10. Recognizing contributions 21

https://help.github.com/articles/about-pull-request-reviews
https://help.github.com/articles/fork-a-repo
https://github.com/HBClab/NiBetaSeries
https://guides.github.com/introduction/flow
https://github.com/kentcdodds/all-contributors#emoji-key
https://docs.google.com/document/d/1HFUkAEE-pB-angVcYe6pf_-fVf4sCpOHKesUvfb8Grc/edit#heading=h.hds2i7ii7hjo

NiBetaSeries, Release 0.1.0

— Based on contributing guidelines from the STEMMRoleModels project.

22 Chapter 7. Contributing to NiBetaSeries

https://github.com/KirstieJane/STEMMRoleModels

CHAPTER 8

Authors

• James Kent - https://github.com/jdkent

23

https://github.com/jdkent

NiBetaSeries, Release 0.1.0

24 Chapter 8. Authors

CHAPTER 9

0.2.1 (November 13, 2018)

Large thanks to everyone at neurohackademy that helped make this a reality. This release is still a bit premature
because I’m testing out my workflow for making releases.

• [ENH] Add link to Zenodo DOI (#57) @kdestasio

• [ENH] run versioneer install (#60) @jdkent

• [FIX] connect derivative outputs (#61) @jdkent

• [FIX] add CODEOWNERS file (#63) @jdkent

• [FIX] Fix pull request template (#65) @kristianeschenburg

• [ENH]Update CONTRIBUTING.rst (#66) @PeerHerholz

• [FIX] ignore sourcedata and derivatives directories in layout (#69) @jdkent

• [DOC] Added zenodo file (#70) @ctoroserey

• [FIX] file logic (#71) @jdkent

• [FIX] confound removal (#72) @jdkent

• [FIX] Find metadata (#74) @jdkent

• [FIX] various fixes for a real dataset (#75) @jdkent

• [ENH] allow confounds to be none (#76) @jdkent

• [ENH] Reword docs (#77) @jdkent

• [TST] Add more tests (#78) @jdkent

• [MGT] simplify and create deployment (#79) @jdkent

25

NiBetaSeries, Release 0.1.0

26 Chapter 9. 0.2.1 (November 13, 2018)

CHAPTER 10

0.2.0 (November 13, 2018)

• [MGT] simplify and create deployment (#79)

• [TST] Add more tests (#78)

• [ENH] Reword docs (#77)

• [ENH]: allow confounds to be none (#76)

• various fixes for a real dataset (#75)

• [FIX]: Find metadata (#74)

• [FIX] confound removal (#72)

• [WIP, FIX]: file logic (#71)

• [DOC] Added zenodo file (#70)

• [FIX]: ignore sourcedata and derivatives directories in layout (#69)

• Update CONTRIBUTING.rst (#66)

• Fix pull request template (#65)

• FIX: add CODEOWNERS file (#63)

• FIX: connect derivative outputs (#61)

• run versioneer install (#60)

• Fix issue #29: Add link to Zenodo DOI (#57)

• Fix issue #45: conform colors of labels (#56)

• fix links in readme.rst (#55)

• Added code of conduct (#53)

• Add link to contributing in README (#52)

• removed acknowledgments section of pull request template (#50)

• [TST]: Add functional test (#49)

27

NiBetaSeries, Release 0.1.0

• [FIX]: remove references to bootstrap (#48)

• FIX: test remove base .travis.yml (#47)

• removed data directory (#40)

• Add pull request template (#41)

• Update issue templates (#44)

• Update contributing (#43)

• README (where’s the beef?) (#37)

• change jdkent to HBClab (#38)

• [FIX]: pass tests (#14)

• [ENH]: improve docs (#13)

• add documentation (#11)

• FIX: add graph (#10)

• Refactor NiBetaSeries (#9)

• Refactor (#2)

28 Chapter 10. 0.2.0 (November 13, 2018)

CHAPTER 11

0.1.0 (2018-06-08)

• First release on PyPI.

29

NiBetaSeries, Release 0.1.0

30 Chapter 11. 0.1.0 (2018-06-08)

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

31

NiBetaSeries, Release 0.1.0

32 Chapter 12. Indices and tables

Bibliography

[Rissman2004] https://www.ncbi.nlm.nih.gov/pubmed/15488425

[Mumford2012] https://www.ncbi.nlm.nih.gov/pubmed/21924359

[Cisler2014] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019671/

[Gottlich2015] https://www.frontiersin.org/articles/10.3389/fnsys.2015.00126/full

[Abdulrahman2016] https://www.ncbi.nlm.nih.gov/pubmed/26549299

33

https://www.ncbi.nlm.nih.gov/pubmed/15488425
https://www.ncbi.nlm.nih.gov/pubmed/21924359
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019671/
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00126/full
https://www.ncbi.nlm.nih.gov/pubmed/26549299

NiBetaSeries, Release 0.1.0

34 Bibliography

Python Module Index

n
nibetaseries, 15

35

NiBetaSeries, Release 0.1.0

36 Python Module Index

Index

N
nibetaseries (module), 15

37

	NiBetaSeries
	Installation
	Documentation
	Development

	Betaseries
	Introduction
	Relationship to Resting State
	Relationship to Traditional Task Analysis
	Summary
	Conceptual Background
	Math Background
	Relevent Software
	Other Relevant Readings
	References

	Installation
	Usage
	Command-Line Arguments

	Workflows
	Participant Workflow
	BetaSeries Workflow
	Correlation Workflow

	Reference
	nibetaseries

	Contributing to NiBetaSeries
	Table of contents
	Joining the BIDS community
	Check out the BIDS Starter Kit
	Get in touch
	Contributing through GitHub
	Writing in markdown
	Writing in ReStructuredText
	Where to start: issue labels
	Making a change with a pull request
	Recognizing contributions
	Thank you!

	Authors
	0.2.1 (November 13, 2018)
	0.2.0 (November 13, 2018)
	0.1.0 (2018-06-08)
	Indices and tables
	Bibliography
	Python Module Index

