
NiBetaSeries
Release 0.1.0

Dec 14, 2018

Contents

1 NiBetaSeries 1
1.1 Installation . 2
1.2 Documentation . 2
1.3 Development . 2

2 Betaseries Correlations 3
2.1 Conceptual Background . 3
2.2 Math Background . 4

3 Installation 5

4 Usage 7
4.1 Command-Line Arguments . 7

5 Workflows 9
5.1 Participant Workflow . 9
5.2 BetaSeries Workflow . 10
5.3 Correlation Workflow . 10

6 Reference 13
6.1 nibetaseries . 13

7 Contributing to NiBetaSeries 15
7.1 Table of contents . 15
7.2 Joining the BIDS community . 15
7.3 Get in touch . 16
7.4 Contributing through GitHub . 16
7.5 Writing in markdown . 16
7.6 Where to start: issue labels . 16
7.7 Making a change with a pull request . 17
7.8 Recognizing contributions . 19
7.9 Thank you! . 19

8 Authors 21

9 Changelog 23
9.1 0.1.0 (2018-06-08) . 23

i

10 Indices and tables 25

Python Module Index 27

ii

CHAPTER 1

NiBetaSeries

docs
tests

package

NiBetaSeries is BIDS compatible application that calculates betaseries correlations. In brief, a beta coefficient is
calculated for each trial (or event) resulting in a series of betas that can be used to correlate regions of interest with
each other.

NiBetaSeries takes preprocessed data as input that satisfy the BIDS deriviatives specification. In practical terms,
NiBetaSeries uses the output of fmriprep, a great BIDS compatible preprocessing tool. Specifically, NiBetaSeries
requires the input and the atlas to already be in MNI space since currently no transformations are applied to the data.
You can use any arbitrary atlas as long as it is in MNI space (the same space as the preprocessed data).

With NiBetaSeries you can receive:

• betaseries images (TODO)

• correlation matrices

This is a very young project that still needs some tender loving care to grow. That’s where you fit in! If you would like
to contribute, please read our code of conduct and contributing page.

This project heavily leverages nipype, nilearn, pybids, and nistats for development. Please check out their pages and
support the developers.

• Free software: MIT license

1

https://nibetaseries.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/HBClab/NiBetaSeries
https://codecov.io/github/HBClab/NiBetaSeries
https://pypi.python.org/pypi/nibetaseries
https://pypi.python.org/pypi/nibetaseries
https://pypi.python.org/pypi/nibetaseries
https://pypi.python.org/pypi/nibetaseries
https://github.com/HBClab/NiBetaSeries/compare/v0.1.0...master
http://bids.neuroimaging.io/
https://bids-apps.neuroimaging.io/
http://bit.ly/2vKeKcp
http://fmriprep.readthedocs.io/en/latest/
http://nipype.readthedocs.io/en/latest/
https://nilearn.github.io/
https://incf.github.io/pybids/
https://nistats.github.io/

NiBetaSeries, Release 0.1.0

1.1 Installation

pip install nibetaseries

1.2 Documentation

https://NiBetaSeries.readthedocs.io/

If you’re interested in contributing to this project, here are some guidelines for contributing. Another good place to
start is by checking out the open issues.

1.3 Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

2 Chapter 1. NiBetaSeries

https://NiBetaSeries.readthedocs.io/
https://nibetaseries.readthedocs.io/en/latest/contributing.html
https://github.com/HBClab/NiBetaSeries/issues

CHAPTER 2

Betaseries Correlations

Betaseries correlations track the trial-to-trial hemodynamic fluctuations that occur within a task. In contrast to typical
General Linear Models (GLMs) where the hemodynamic fluctuations between trials of the same type are considered
noise, betaseries correlations leverage these fluctuations to provide a quantitative measure of how synchronous they
are across different brain regions identifying networks that are activated during a task. GLMs, by contrast, can only
provide information about which brain regions are active, but cannot tell us which of those active regions form a
network. For example, in a task where you have encode both the size and position of a stimulus, a GLM will show you
active regions that may be encoding size or position or both. Betaseries correlations, on the other hand, could provide
evidence of which regions form a size encoding network, and which form a position encoding network.

2.1 Conceptual Background

Jesse Rissman [Rissman, 2004]_ was the first to publish on betaseries correlations describing their usage in the context
of a working memory task. In this task, participants saw a cue, a delay, and a probe, all occurring close in time.
Specifically, a cue was presented for one second, a delay occurred for seven seconds, and a probe was presented
for one second. Given the hemodynamic response function takes approximately six seconds to reach its peak, and
generally takes over 20 seconds to completely resolve, we can begin to see a problem. The events within the trials
occur too close to each other to discern what brain regions are related to encoding the cue, the delay, or the probe.
To discern how the activated brain regions form networks, Rissman conceptualized betaseries correlations. In brief,
instead of having a single regressor to describe all the cue events, a single regressor for all the delay events, and a single
regressor for all the probe events, there is an individual regressor for every event in the experiment. For example, if
your experiment has 40 trials, each with a cue, delay, and probe event, the GLM will have a total of 120 regressors,
fitting a beta estimate for each trial. Complete this process for each trial of a given event type (e.g. cue), at the end you
will have 4D volume where each volume represents the beta estimates for a particular trial, and each voxel represents
a specific beta estimate.

Having one regressor per trial in a single model is known as least squares all. This method, however, has limitations in
the context of fast event related designs. Since each trial has its own regressor, trials that occur very close in time are
colinear (remember the hemodynamic response is slow). Jeanette Mumford et al. [Mumford, 2012]_ investigated this
issue in the context of image classification. In this article, Mumford introduces another modelling strategy known as
least squares separate. In this modelling strategy, instead of having one GLM with a regressor per trial, least squares
separate implements a GLM per trial with two regressors: 1) one for the trial of interest, and 2) one for every other

3

NiBetaSeries, Release 0.1.0

trial in the experiment. This process reduces the colinearity of the regressors and creates a more valid estimate of how
each regressors fits the data.

2.2 Math Background

𝑌 = 𝑋𝛽 + 𝜖(2.1)

The above equation is the General Linear Model (GLM) presented using matrix notation. 𝑌 represents the time-series
we are attempting to explain. The 𝛽 assumes any value that minimizes the squared error between the modeled data
and the actual data, 𝑌 . Finally, 𝜖 (epsilon) refers to the error that is not captured by the model. Within a GLM,
trial-to-trial betas may be averaged for a given trial type and the variance is treated as noise. However, those trial-
to-trial fluctuations may also contain important information that the typical GLM will ignore/penalize. With a couple
modifications to the above equation, we arrive at calculating a betaseries.

𝑌 = 𝑋1𝛽1 +𝑋2𝛽2 + ...+𝑋𝑛𝛽𝑛 + 𝜖(2.2)

With the betaseries equation, a beta is estimated for every trial, instead of for each trial type (or whichever logical
grouping). This gives us the ability to align all the trial betas from a single trial type into a list (i.e. series). This
operation is completed for all voxels, giving us as many lists of betas as there are voxels in the data. Essentially, we
are given a 4-D dataset where the fourth dimension represents trial number instead of time (as the fourth dimension
is represented in resting state). And analogous to resting state data, we can perform correlations between the voxels to
discern which voxels (or which aggregation of voxels) synchronize best with other voxels.

There is one final concept to cover in order to understand how the betas are estimated in NiBetaSeries. You
can model individual betas using a couple different strategies; with a least squares all (LSA) approximation which
the equation above represents, and a least squares separate (LSS) approximation in which each trial is given it’s own
GLM. The advantage of LSS comes from reducing the colinearity between closely spaced trials. In LSA, if trials
occurred close in time then it would be difficult to model whether the fluctuations should be attributed to one trial or
the other. LSS reduces this ambiguity by only having two regressors: one for the trial of interest and another for every
other trial. This reduces the colinearity between regressors and makes each beta estimate more reliable.

for trial, beta in zip(trials, betas):
data = X[trial] * beta + error

This python psuedocode demonstrates LSS where each trial is given it’s own model.

4 Chapter 2. Betaseries Correlations

CHAPTER 3

Installation

At the command line:

pip install nibetaseries

5

NiBetaSeries, Release 0.1.0

6 Chapter 3. Installation

CHAPTER 4

Usage

4.1 Command-Line Arguments

NiBetaSeries BIDS arguments

usage: nibs [-h] [-v] [-sm SMOOTHING_KERNEL] [-lp LOW_PASS] [-hp HIGH_PASS]
[-c CONFOUNDS [CONFOUNDS ...]] [-w WORK_DIR]
[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[--session_label SESSION_LABEL] [-t TASK_LABEL]
[--run_label RUN_LABEL] [-sp {MNI152NLin2009cAsym}]
[--variant_label VARIANT_LABEL] [--exclude_variant_label]
[--hrf_model {glover,spm,fir,glover + derivative,glover + derivative +

→˓dispersion,spm + derivativespm + derivative + dispersion}]
[-a ATLAS_IMG] -l ATLAS_LUT [--graph]
bids_dir derivatives_pipeline output_dir {participant,group}

4.1.1 Positional Arguments

bids_dir The directory with the input dataset formatted according to the BIDS standard.

derivatives_pipeline The pipeline that contains minimally preprocessed img, brainmask, and con-
founds.tsv

output_dir The directory where the output directory and files should be stored. If you are
running group level analysis this folder should be prepopulated with the results
of theparticipant level analysis.

analysis_level Possible choices: participant, group

Level of the analysis that will be performed Multiple participant level analyses
can be run independently (in parallel) using the same output_dir

7

NiBetaSeries, Release 0.1.0

4.1.2 Named Arguments

-v, --version show program’s version number and exit

--participant_label The label(s) of the participant(s) that should be analyzed. The label corresponds
to sub-<participant_label> from the BIDS spec (so it does not include “sub-“). If
this parameter is not provided all subjects should be analyzed. Multiple partici-
pants can be specified with a space separated list.

4.1.3 Options for preprocessing

-sm, --smoothing_kernel select a smoothing kernel (mm)

-lp, --low_pass low pass filter

-hp, --high_pass high pass filter

-c, --confounds The confound column names that are to be included in nuisance regression. write
the confounds you wish to include separated by a space

-w, --work_dir directory where temporary files are stored

4.1.4 Options for selecting images

--session_label select a session to analyze

-t, --task_label select a specific task to be processed

--run_label select a run to analyze

-sp, --space_label Possible choices: MNI152NLin2009cAsym

select a bold derivative in a specific space to be used

--variant_label select a variant bold to process

--exclude_variant_label exclude the variant from FMRIPREP

4.1.5 Options for processing beta_series

--hrf_model Possible choices: glover, spm, fir, glover + derivative, glover + derivative + dis-
persion, spm + derivativespm + derivative + dispersion

convolve your regressors with one of the following hemodynamic response func-
tions

-a, --atlas-img input atlas nifti

-l, --atlas-lut atlas look up table (tsv) formatted with the columns: index, region

4.1.6 misc options

--graph generates a graph png of the workflow

8 Chapter 4. Usage

CHAPTER 5

Workflows

5.1 Participant Workflow

correlation_wf

output_node (utility)

betaseries_wf

input_node (utility)

9

NiBetaSeries, Release 0.1.0

The general workflow for a participant models the betaseries for each trial type for each bold file associated with
the participant. Then betas within a region of interest based off a parcellation are averaged together. This occurs as
many times as there are trials for that particular trial type, resulting in a psuedo-timeseries (e.g. each point in “time”
represents an occurrence of that trial). All the psuedo time-series within a trial type are correlated with each other,
resulting in a final correlation (adjacency) matrix.

5.2 BetaSeries Workflow

temp_filt_node (utility)

betaseries_node (nistats)

output_node (utility)

input_node (utility)

The bold file is temporally filtered by nilearn (high pass and/or low pass) before being passed into nistats for modelling
by least squares separate.

5.3 Correlation Workflow

The betaseries file has signal averaged across trials within a region defined by an atlas parcellation. After signal
extraction has occurred for all regions, the signals are all correlated with each other to generate a correlation matrix.

10 Chapter 5. Workflows

NiBetaSeries, Release 0.1.0

rename_matrix_node (utility)

output_node (utility)

atlas_corr_node (nilearn)

input_node (utility)

5.3. Correlation Workflow 11

NiBetaSeries, Release 0.1.0

12 Chapter 5. Workflows

CHAPTER 6

Reference

6.1 nibetaseries

13

NiBetaSeries, Release 0.1.0

14 Chapter 6. Reference

CHAPTER 7

Contributing to NiBetaSeries

Welcome to the NiBetaSeries repository!

We’re so excited you’re here and want to contribute.

NiBetaSeries calculates betaseries correlations using python! We hope that these guidelines are designed to make it
as easy as possible to contribute to NiBetaSeries and the broader Brain Imaging Data Structure (BIDS) community. If
you have any questions that aren’t discussed below, please let us know through one of the many ways to get in touch.

7.1 Table of contents

Been here before? Already know what you’re looking for in this guide? Jump to the following sections:

• Joining the BIDS community

• Get in touch

• Contributing through GitHub

• Where to start: wiki, code and templates

• Where to start: issue labels

• Make a change with a pull request

• Example pull request

• Recognizing contributions

7.2 Joining the BIDS community

BIDS - the Brain Imaging Data Structure - is a growing community of neuroimaging enthusiasts, and we want to make
our resources accessible to and engaging for as many researchers as possible. NiBetaSeries will hopefully play a small
part towards introducing people to BIDS and help the broader community.

15

http://bids.neuroimaging.io

NiBetaSeries, Release 0.1.0

We therefore require that all contributions adhere to our Code of Conduct.

How do you know that you’re a member of the BIDS community? You’re here! You know that BIDS exists! You’re
officially a member of the community. It’s THAT easy! Welcome!

7.3 Get in touch

There are lots of ways to get in touch with the team maintaining NiBetaSeries if you have general questions about the
BIDS ecosystem. For specific questions about NiBetaSeries, please see the practical guide (Currently the main contact
is James Kent)

• Message jdkent on the brainhack slack

• Click here for an invite to the slack workspace.

• The BIDS mailing list

• Via the Neurostars forum.

– This is our preferred way to answer questions so that others who have similar questions can
benefit too! Even if your question is not well-defined, just post what you have so far and we will be
able to point you in the right direction!

7.4 Contributing through GitHub

git is a really useful tool for version control. GitHub sits on top of git and supports collaborative and distributed
working.

We know that it can be daunting to start using git and GitHub if you haven’t worked with them in the past, but the
NibetaSeries maintainer(s) are here to help you figure out any of the jargon or confusing instructions you encounter!

In order to contribute via GitHub you’ll need to set up a free account and sign in. Here are some instructions to help
you get going. Remember that you can ask us any questions you need to along the way.

7.5 Writing in markdown

GitHub has a helpful page on getting started with writing and formatting on GitHub.

Most of the writing that you’ll do will be in Markdown. You can think of Markdown as a few little symbols around
your text that will allow GitHub to render the text with a little bit of formatting. For example you could write words
as bold (**bold**), or in italics (*italics*), or as a link to another webpage.

7.6 Where to start: issue labels

The list of labels for current issues can be found here and includes:

• If you feel that you can contribute to one of these issues, we especially encourage you to do so!

• There are lots of ways to ask questions but opening an issue is a great way to start a conversation and get your
answer. Ideally, we’ll close it out by adding the answer to the docs!

16 Chapter 7. Contributing to NiBetaSeries

CODE_OF_CONDUCT.md
https://brainhack.slack.com/messages/C8RG7F6PN
https://brainhack-slack-invite.herokuapp.com
https://groups.google.com/forum/#!forum/bids-discussion
https://neurostars.org/tags/bids
https://git-scm.com
https://github.com
https://help.github.com/articles/signing-up-for-a-new-github-account/
https://help.github.com/articles/getting-started-with-writing-and-formatting-on-github
https://daringfireball.net/projects/markdown
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://github.com/HBClab/NiBetaSeries/labels
https://nibetaseries.readthedocs.io/en/latest/

NiBetaSeries, Release 0.1.0

• These issues are particularly appropriate if it is your first contribution to the BIDS Starter Kit, or to GitHub
overall.

If you’re not sure about how to go about contributing, these are good places to start. You’ll be mentored through
the process by the maintainers team. If you’re a seasoned contributor, please select a different issue to work
from and keep these available for the newer and potentially more anxious team members.

• If you want to ask for something new, please try to make sure that your request is distinct from any others that
are already in the queue (or part of the starter kit!). If you find one that’s similar but there are subtle differences
please reference the other enhancement in your issue.

• These are usually really great issues to help out with: our goal is to make it easy to understand BIDS without
having to ask anyone any questions! Documentation is the ultimate solution

• These issues are reporting a problem or a mistake in the project.

The more details you can provide the better! If you know how to fix the bug, please open an issue first and then
submit a pull request

We like to model best practice, so the BIDS Starter Kit itself is managed through these issues. We may occa-
sionally have some to coordinate some logistics.

7.7 Making a change with a pull request

We appreciate all contributions to NiBetaSeries. THANK YOU for helping us build this useful resource.

Remember that if you’re adding information to the wiki you don’t need to submit a pull request. You can just log
into GitHub, navigate to the wiki and click the edit button.

If you’re updating the code, the following steps are a guide to help you contribute in a way that will be easy for
everyone to review and accept with ease.

7.7.1 1. Comment on an existing issue or open a new issue referencing your addi-
tion

This allows other members of the NiBetaSeries team to confirm that you aren’t overlapping with work that’s currently
underway and that everyone is on the same page with the goal of the work you’re going to carry out.

This blog is a nice explanation of why putting this work in up front is so useful to everyone involved.

7.7.2 2. Fork the NiBetaSeries repository to your profile

This is now your own unique copy of NiBetaSeries. Changes here won’t affect anyone else’s work, so it’s a safe space
to explore edits to the code!

Make sure to keep your fork up to date with the master repository, otherwise you can end up with lots of dreaded
merge conflicts.

7.7.3 3. Clone your forked NiBetaSeries to your work machine

Now that you have your own repository to explore you should clone it to your work machine so you can easily edit the
files:

7.7. Making a change with a pull request 17

https://github.com/HBClab/NiBetaSeries/labels/good%20first%20issue
https://github.com/HBClab/NiBetaSeries/labels/bug
https://github.com/HBClab/NiBetaSeries/wiki
https://www.igvita.com/2011/12/19/dont-push-your-pull-requests
https://help.github.com/articles/syncing-a-fork
https://help.github.com/articles/about-merge-conflicts

NiBetaSeries, Release 0.1.0

clone the repository
git clone https://github.com/YOUR-USERNAME/NiBetaSeries
change directories into NiBetaSeries
cd NiBetaSeries

7.7.4 4. Make the changes you’ve discussed

Try to keep the changes focused. If you submit a large amount of work in all in one go it will be much more work for
whomever is reviewing your pull request. Help them help you

This project requires you to “branch out” and make new branch and a new issue to go with it if the issue doesn’t
already exist.

Example:

create the branch on which you will make your issues
git checkout -b your_issue_branch

7.7.5 5. Run the tests

When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

If the checks fail and you know what went wrong, make the change and run tox again. If you are not sure what the
error is, go ahead to step 6.

7.7.6 6. Add/Commit/Push the changes to the NiBetaSeries repository

Once you’ve made the changes on your branch you are ready to 1) add the files to be tracked by git 2) commit the
files to take a snapshot of the branch, and 3) push the changes to your forked repository. You can do complete the
add/commit/push process following this github help page.

7.7.7 7. Submit a pull request

A member of the NiBetaSeries team will review your changes to confirm that they can be merged into the main
codebase.

A review will probably consist of a few questions to help clarify the work you’ve done. Keep an eye on your github
notifications and be prepared to join in that conversation.

You can update your fork of the NiBetaSeries repository and the pull request will automatically update with those
changes. You don’t need to submit a new pull request when you make a change in response to a review.

GitHub has a nice introduction to the pull request workflow, but please get in touch if you have any questions.

7.7.8 NiBetaSeries coding style guide

Whenever possible, instances of Nodes and Workflows should use the same names as the variables they are assigned
to. This makes it easier to relate the content of the working directory to the code that generated it when debugging.

18 Chapter 7. Contributing to NiBetaSeries

https://media.giphy.com/media/uRb2p09vY8lEs/giphy.gif
https://help.github.com/articles/creating-and-deleting-branches-within-your-repository
https://github.com/HBClab/NiBetaSeries/issues
http://tox.readthedocs.io/en/latest/install.html
https://help.github.com/articles/adding-a-file-to-a-repository-using-the-command-line/
https://help.github.com/articles/about-pull-request-reviews
https://help.github.com/articles/fork-a-repo
https://github.com/HBClab/NiBetaSeries
https://guides.github.com/introduction/flow

NiBetaSeries, Release 0.1.0

Workflow variables should end in _wf to indicate that they refer to Workflows and not Nodes. For instance, a workflow
whose basename is myworkflow might be defined as follows:

from nipype.pipeline import engine as pe

myworkflow_wf = pe.Workflow(name='myworkflow_wf')

If a workflow is generated by a function, the name of the function should take the form init_<basename>_wf :

def init_myworkflow_wf(name='myworkflow_wf):
workflow = pe.Workflow(name=name)
...
return workflow

myworkflow_wf = init_workflow_wf(name='myworkflow_wf')

If multiple instances of the same workflow might be instantiated in the same namespace, the workflow names and
variables should include either a numeric identifier or a one-word description, such as:

myworkflow0_wf = init_workflow_wf(name='myworkflow0_wf')
myworkflow1_wf = init_workflow_wf(name='myworkflow1_wf')

or

myworkflow_lh_wf = init_workflow_wf(name='myworkflow_lh_wf')
myworkflow_rh_wf = init_workflow_wf(name='myworkflow_rh_wf')

7.8 Recognizing contributions

BIDS follows the all-contributors specification, so we welcome and recognize all contributions from documentation
to testing to code development. You can see a list of current contributors in the BIDS specification.

7.9 Thank you!

You’re awesome.

— Based on contributing guidelines from the STEMMRoleModels project.

7.8. Recognizing contributions 19

https://github.com/kentcdodds/all-contributors#emoji-key
https://docs.google.com/document/d/1HFUkAEE-pB-angVcYe6pf_-fVf4sCpOHKesUvfb8Grc/edit#heading=h.hds2i7ii7hjo
https://github.com/KirstieJane/STEMMRoleModels

NiBetaSeries, Release 0.1.0

20 Chapter 7. Contributing to NiBetaSeries

CHAPTER 8

Authors

• James Kent - https://github.com/jdkent

21

https://github.com/jdkent

NiBetaSeries, Release 0.1.0

22 Chapter 8. Authors

CHAPTER 9

Changelog

9.1 0.1.0 (2018-06-08)

• First release on PyPI.

23

NiBetaSeries, Release 0.1.0

24 Chapter 9. Changelog

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

25

NiBetaSeries, Release 0.1.0

26 Chapter 10. Indices and tables

Python Module Index

n
nibetaseries, 13

27

NiBetaSeries, Release 0.1.0

28 Python Module Index

Index

N
nibetaseries (module), 13

29

	NiBetaSeries
	Installation
	Documentation
	Development

	Betaseries Correlations
	Conceptual Background
	Math Background

	Installation
	Usage
	Command-Line Arguments

	Workflows
	Participant Workflow
	BetaSeries Workflow
	Correlation Workflow

	Reference
	nibetaseries

	Contributing to NiBetaSeries
	Table of contents
	Joining the BIDS community
	Get in touch
	Contributing through GitHub
	Writing in markdown
	Where to start: issue labels
	Making a change with a pull request
	Recognizing contributions
	Thank you!

	Authors
	Changelog
	0.1.0 (2018-06-08)

	Indices and tables
	Python Module Index

